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Gaussian Beam-Mode Analysis and Phase-Centers
of Corrugated Feed Horns

Richard J. Wylde and Derek H. Martin

3

Abstract—The notion of phase-center for a feed-horn is criti-
cally examined and, using Gaussian beam-mode analysis, several
variously-defined phase-centers, including a maximal-gain phase-
center, are investigated in detail for corrugated feed-horns in
balanced hybrid mode. Expressions for the locations of these
phase centers are derived which are applicable for a wide range of
corrugated horn dimensions and for near-field as well as far-field
distances.

[. INTRODUCTION

N MOST multi-reflector antenna systems the individual

reflectors have paraboloidal, hyperboloidal or ellipsoidal
surfaces. The values of the geometrical parameters for the
surface of such a reflector can be chosen so that the reflector
would transform an incident beam which has a spherical phase-
front with a given radius of curvature at the reflector, R; say,
into an emergent beam which would also have a spherical
phase front at the reflector, with radius of curvature R., say:
the focal length of such a reflector, f, can be defined in terms
of the discrete change in phase-front curvature at the reflector,
ie.,

1/f:1/RL*1/Re

where, by convention, a positive value for the phase-front
curvature is assigned for a diverging beam and a negative
value for a converging beam.

Frequently, in designing or computing the performance of
a reflector antenna system, the beam from the feed horn is
represented as a spherical wave, in which all the phase-fronts
are spherical, with a common center of curvature known as
the phase-center of the beam. A hypothetical horn producing
such a beam would be optically matched to the first reflector
in an antenna system by placing it with its phase-center at a
distance R; from the reflector,

Real horns do not usually produce beams with spherical
phase-fronts however. Only a horn specially shaped so as to
give, over the aperture plane, uniform phase and an amplitude
distribution with inversion symmetry will give spherical phase-
fronts in the far-field. No horn gives spherical phase-fronts
at near and intermediate distances. Optimized design of a
dual or multi-reflector antenna system can require the first
reflector to be in the near or intermediate field of the feed-
horn. Determining the optimal distance for a horn from the
reflector it feeds therefore requires careful consideration. The
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purpose of this paper is to show how this question can be
approached using Gaussian beam-mode analysis [1], [2]. We
deal in particular with corrugated feed-horns [3], [4] but the
line we take can be extended to cover other types of feed-
horn [5].

Recently we introduced a beam-mode description of the
field of a corrugated horn [4] and we shall make full use
of that. Any paraxial free-space beam can be represented
as a superposition of independently propagating orthogonal
modes; the relative amplitudes of the constituent modes are
determined by making the superposition fit the field over
some cross-sectional plane where the form of the field is
known—in the case of the beam of a feed-horn this is the
aperture plane. The efficacy of this ‘beam-mode’ analysis
springs from the fact that the phase-fronts in an individual
mode are all spherical and, moreover, at a given down-
beam distance the phase-fronts of all the constituent modes
have the same radius of curvature. The transformation of a
paraxial beam at a reflector can therefore be readily treated
by considering each mode separately. The results we obtain
will be applicable for a wide range of horn dimensions. For
horns having very small apertures, or very large cone-angles,
the results would be quantitatively in error to some extent
because the highly divergent beams from such horns would
not conform with the paraxial assumption on which beam-
mode analysis is based (see the comment following equation
4 below). We shall assume the field amplitude distribution over
the aperture of a corrugated horn is that of a balanced hybrid-
mode, as appropriate for the frequency band over which such
a horn has its optimal characteristics [3].

Analyzing the beam of a horn into beam-modes provides a
clear basis for identifying a beam-mode phase-center for each
given down-beam distance because, as we have noted above,
the beam-modes’ phase-fronts there are spherical with a com-
mon center. We shall show that referring to the beam-mode
phase-center when placing a horn with respect to a reflector
can come close to achieving optimal performance. We also
show, however, using the beam-mode analysis, that further
optimization might be possible, depending on the criterion of
good performance; for this we use, as an example, the criterion
of maximized gain for the horn-reflector combination, and we
locate the maximal-gain phase-center of a corrugated feed-
horn for any specified down-beam distance from the reflector.
We shall also use beam-mode analysis to locate some of
the ‘apparent phase-centers® invoked, often uncritically, in
the past.
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Beam-mode analyses have been used recently to determine
optimal locations for the feed-horns in specific systems {13];
the studies reported here provide a general context for under-
standing what is at stake.

1. BEAM-MODE ANALYSIS OF THE FIELDS
OF CORRUGATED FEED HORNS

Any coherent linearly polarized paraxial beam can be de-
composed [1] into a superposition of Gauss—Laguerre beam-
modes. The beam-mode superposition representing the trans-
verse electric field E; of an axially-symmetric beam, in cylin-
drical polar co-ordinates (7, z) with the z-axis coincident with
the beam-axis, is

Ei(r,2) = EA;{exp(—rz/wz) Ly (20 fw?) - w™}

-{exp(—ikr®/2R) }exp —i(kz — wt — 0,)}
)

where k = w/c is the wave-number and p = 0,1,2,3--- is
the mode number.

A$ is the complex amplitude of the p*® mode and is
independent of r and z. Its values are to be determined by
fitting the superposition to the field over some transverse plane
for which the form of the field is known. For a horn, this will
be the aperture plane.

The first term in curly-brackets shows the form of the
variation of the modulus of the p*! beam-mode over a cross-
sectional plane. This is a Gaussian function of 2 modulated
by the p*® Laguerre polynomial, L, (i.e., a power series in 7
to the 2 term). The scale of this variation changes with z
through the z-dependence of the beam-width parameter w as
given in equation 2 below. This expanding scale of the mode’s
field distribution as it propagates in the diffractive spreading
of the beam.

The second term in curly-brackets shows the variation of
the phase of the beam-mode field over a cross-sectional plane,
relative to the on-axis value. The form of this term indicates (in
paraxial approximation) a spherical phase-front with radius-
of-curvature, 2. The value of R varies with propagation
distance, z, as shown in (2) below. The fact that R is not
linearly dependent on z means that the location of the center-
of-curvature of the beam-modes’ equi-phase surfaces varies
with down-beam distance (a second aspect of the diffractive
spreading of the beam).

The third term in curly-brackets gives the on-axis phase. The
phase-angle 8, registers an on-axis phase slip of the P mode
relative to a plane-wave phase (kz — wt); it varies with down-
beam distance as shown in equation 2. This phase-slippage is
the third consequence of diffractive spreading.

The z-dependences of the beam-mode parameters w, R and
8, are:

w? = w? + {2(z — 20)/kwo}?
R = (z‘— Z0) + {(kwf/2)2/ (z — Zo)}

0, = (2p + 1) arctan{2(z — z,)/kw?} )
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where w,, 2, are constants (the ‘beamwaist’ width parameter
and position) which can be expressed in terms of the values
W, R, assigned to w, R in the aperture plane at z = 2, thus

w? = wi/{l + (kwi/ZRa)2}
Zo =~ Za = —Ra/{l + (ZRa/kwﬁf}

The values of w, and R, are not uniquely determined
because the Gauss—Laguerre (GL) functions, exp (—r / 'wZ) .
L, (2r? /w?) exp(—ikr?®/2R), for any choice of values for the
parameters w and R, form a complete set. That is to say,
an arbitrary axially-symmetric function can be fitted by a
superposition of GL functions with any choice of values for
the parameters w and R. The values which would have to be
assigned to the complex amplitudes of the GL functions in
order to achieve the fit will depend on the values assigned
to w and R, of course. The optimum selection of values is
a matter of computational economy because a good selection
will minimize the number of GL functions which must be
included in the superposition in order to obtain a good fit.

Now the field in the aperture of a corrugated feed-horn in
balanced hybrid mode [3] bas a spherical phase-front with
a radius of curvature equal to the length of the horn, H,
from aperture to apex (Fig. 1). The assignment R, = H is
clearly indicated as optimum. The distribution of | E;| over the
aperture plane of a corrugated feed-horn is given by a zero-
order Bessel function truncated at its first zero, at r = a, the
radius of the circular aperture. This approximates closely to a
Gaussian function having a width parameter w = 0.6435q [4].
For this reason, assigning the value 0.6435a to w, minimizes
the number of GL functions required to give a good fit to the
field. The quantity kw?2/2R, appearing in (3) is thus equal
to (0.64352)ka?/2H and can now be seen to be a parameter
for the dimensions of the horn which we shall denote A; the
dimensions of the horn are specified by H and A. (A is thus
(0.6435)%s where s = ka?/2H is sometimes referred to as the
‘phase error’ across the aperture). From (3) we can now write

A
2 _
fwo = 2T

)

)
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A2
T1Az ©)

At this point it is possible to note the range of horn
dimensions for which the beam-mode analysis will be subject
to little error as a result of non-paraxiality, i.e., for which
kwg < 6 (see [1], Fig. 1). From (4) above, this requirement
is

20 = Zg —

a/H <0.28 — (24.4/k%a?)

The fields of very wide-angle horns with a/H > 0.28
radians will therefore depart to some degree from the beam-
mode predictions no matter how large the apertures; and those
of small-aperture horns with ka << 9.34 will do so no matter
how small the cone angle. Between these limits there is a wide
range of horn dimensions for which the beam-mode analysis
introduces very little error due non-paraxiality.

Having assigned the value H for the radius of curvature of
the beam-modes’ phase-fronts in the aperture plane, we must
now see that the beam-modes’ on-axis phase-angles are all the
same at the aperture, modulo £7. (A superposition of beam-
modes all of which have the same phase-front curvatures will
give a resultant field with a spherical phase-front only in a
cross-section at which the on-axis phases are the same for
all the modes, modulo *r). The on-axis phase derives from
both the complex amplitude A and the beam-mode phase-slip
angle 6,. The 6, depends on p (2) and at the aperture has the
value

2(zq — 20)
—_— 6
kw2 ©
This p-dependence must therefore be compensated for by
assigning a complementary dependence of the phase-angle
of the beam-modes’ complex amplitudes, Ap. If we write
Ap = Apew*‘p where A, is a real amplitude, we may choose

straightforwardly
Q(Za - ZO)
kw?

The real amplitude, A,, introduced in this way is not
necessarily positive. Its magnitude and sign are determined
in the fit to the aperture field.

The beam-mode on-axis phase at an arbitrary down-beam
distance from the aperture is thus

@p = 0P+9Ap = (p+ 1/2)@

Op(2=12,)=(2p+1) -arctan{

6a, =—(2p+1)- arctan{ @

®)

where © is the beam-mode phase-difference, i.e., the com-
mon on-axis phase-difference between all successive pairs of
modes, which is given by

2(z — 2:0)
0=06,11 -6, = 2{ arctan _(_W .

2(2,, - 2’0)
— arctan '—k—u]g—} . (9)

(It should be noted that we are dealing here with axially
symmetric modes only; inclusion of axially asymmetric modes
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TABLE I

Ap = 1.129890929909842
= —0.0001356877140080622
Az = —0.1374882595344276

Ag = —0.0142902289947528
Ag = —0.01731953253685816
Ao = ~0.01197797055512092
A1 = 0.003309000367381503
A1z = 0.004435748450857954
A1z = 0.00888736454929259
A1q = 0.0095405941002746
Ars = 0.00718982193247121
A1e = 0.00323650627950287
Ar7 = ~0.00089087534434813
Arg = ~0.004106511863628689
A1p = ~0.005823245165949175
Asp = ~0.005941655866810328
A1 = ~0.004736067571242572
Az = ~0.002697585732485339
Az3 = —0.000380127790201935
Az4 = 0.001721877574781014
Aszs = 0.003251327526841281
Ase = 0.004021258673431002
Az7 = 0.004010005168501314

Asg = 0.003330018034541174
Ase = 0.002182468621466627

would give a phase-difference between successive modes only
one-half as large as this-see [1]).

From (4) and (5) above for 2y and wg this expression for
O can be reduced to

22—z,

fan 2 = (10)

2 AL+ 255)

In this sense © can be regarded as a reduced down-beam
distance.

As the beam propagates away from the aperture the modes
thus lose the equality of on-axis phase and consequently the
beam acquires non-spherical phase-fronts at all down-beam
distances, in spite of the fact that the beam-modes’ own
phase fronts remain spherical. Both the amplitude and phase
distributions over a beam cross-section develop considerable
structure. To display this structure we require the values of
the coefficients A,. The assignment w, = 0.6435a, R, = H
leads [4] to the relative values for A, for p = 0 to 29 given in
Table 1. We should remark that the same values of A, apply
for all corrugated feed-horns, i.e., there is no dependence of
the A, on the dimensions of the horn.

Writing the p*® beam-mode

By = [Eyple®rem im0 (11)
we note that the mode’s modulus |E,,|, and phase ¢, are
functions both of r, 2 and of the horn dimensions H, A as
follows. From equation 1

|Bipl = (Apfw)el )L (202 w?)  (12)
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the dependences on z, H, A being contained in w(z, H,A)
((2), (4), and (5)). And from (8)

kr? kr? 1
= = - = 13
Dp + 0, 2R+(p+2>® (13)

2R
the dependences on 2z, H, A being contained in R(z, H,A)
(equations (2), (4), and (5)) and in ©(z, H, A) (10).
Then writing the total field F; = Zp E4, thus

E, = lEt|ei<I>e—i(kz—wt) (14)
we have
2 2y 1/2
|Ey| = <Z | Eyp| cos ¢p) -+ (Z | Egp) sin¢p)
P P
(15)
and
> |Eip|sing,
& = arctan{ —F————— 16
{ Zp | Etp| cos ¢y (16)

Now changing the origin for the phase-angles ¢, ie.,
adding an arbitrary p-independent angle to ¢, in the right-
hand sides of (15) and (16), would require no change to be
made in the left-hand side of equation 15 and only the addition
of that angle to the left-hand side of equation 16. If we choose
(kr?/2R — ©/2) as the p-independent angle to be added, we
have ¢, — p© from (13), and hence the weighted amplitude
]Et]'w is

|Et|w = { (Z lEthUJCOSP@)z

’ 2y 1/2
+ (Z | Eyp|w sin p@) } (17)
p

and the phase-deviation from a spherical phase-front of cur-
vature R is

(® + kr?/2R — ©/2) = arctan ( 2y Biple sinp@) (18)

> p | Etplwcos p©

The only r-dependence in the right-hand sides of these
equations is in the | Fy,|w which is a function of (r/w) only-
see (12). It can be seen, therefore, that the field quantities,
|E|w and (@ +kr?/2R—©/2), are functions of two variables
only, namely (r/w) and ©; the dependence of the field of a
horn on the four variables, r, 2 and H, A, is implicit in the
dependence of the field quantities on these two variables. The
functions in equations 17 and 18 are universal in the sense that
they are not specific to any particular horn dimensions, but the
radiated field of a given horn can be readily determined from
them since the dependences of w and © on r, z and H, A are
simple (equations (2), (4), (5) and (10)). Figures 2(a) and (b)
show the variation of | E;|w and of (® + kr?/2R — ©/2) with
(r/w) and © calculated using thirty modes, p = 0 to 29.

These computations are undemanding in computer time
but the resulting fields in Fig. 2(a) and 2(b) span all the
distributions that can be produced by corrugated feed-horns,
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radians
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Fig. 2. (a) The weighted amplitude of the field in beams of corrugated
feed horns as dependent upon the reduced off-axis and down-beam distances.
(b) The deviation of the phase of the field in beams of corrugated feed horns
from that given by the spherical beam-mode equiphase surface, as dependent
upon the reduced off-axis and down-beam distances.

at all down-beam distances and for all horn-dimensions. The
modulus and phase distributions in the field of a given feed
horn, from the aperture plane to the far-field, are those for
values of © lying between © = 0 (corresponding to z — z, =
0) and © = arctan (1/A) (cotresponding to (2 — 2,) — o0).

We show in Fig. 3 the field amplitude distribution in the
aperture plane of the horn, ® = 0, as given by 30 modes. It
can be seen that 30 modes give a good fit to the truncated
Bessel function down to the —40 dB level. The amplitude and
phase distributions at @ = 1.97 have a special significance-see
later-and we show these distributions in Fig. 4.

We have found the software package MATHEMATICA [6],
which allows algebraic symbolic analysis to be carried through
prior to numerical evaluation, to be of great assistance in the
studies we report here.

ITII. THE GAIN OF A REFLECTOR OR LENS ANTENNA
WITH A CORRUGATED FEED-HORN

We examine in this section how the gain of a reflector or
lens antenna, with a corrugated feed-horn, can be treated by
beam-mode analysis. We shall represent the antenna as an
ideal thin lens or phase-transformer, i.e., a device which, when
placed in a cross-sectional plane of the beam from the horn,
produces a discrete phase-advance proportional to the square
of the off-axis distance, with no modification of the amplitude.

Bloomed thin lenses and ellipsoidal reflectors approximate to
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I/W

(b)

Fig. 3. Field amplitude distribution at the aperture plane of a corrugated
feed-horn: (2) truncated Bessel function (b) representation by a superposition
of 30 beam-modes.

dB
r/w
2 4
radians
1
0.75
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0.25
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Fig. 4. The amplitude and phase distributions of the field of a corrugated

feed-horn at reduced down-beam distance © = 1.97.

such behavior but the ideal phase-transformer will exclude the
small off-axis aberration in the case of an ellipsoidal reflector
[7]. Our concern is with the influence of the horn dimensions
on gain, including cases in which the antenna is not in the
far-field of the horn.

The beam emerging from a phase-transformer of this kind
(which we hereon call the antenna) is made up of beam modes
having the same real amplitudes, A,, as the modes of the
incident beam since the field’s amplitude distribution over
the antenna is the same for the incident and emergent beams.
The phase-fronts of each mode in the emergent beam will have
a curvature 1/R,. equal to (1/R; — 1/f) where 1/R, is the
phase-front curvature of the incident modes at the antenna and
f is the focal length of the antenna, i.e., the antenna’s added
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phase is kr2/2f.If f = R;, 1/ R, is zero, i.., the phase-fronts
of the emergent modes are plane at the antenna. For f < R;,
1/R. is negative which means converging emergent modes.
And for f > R;, 1/R. is positive, i.e., the beam-modes are
diverging at the antenna.

The transverse field of the emergent beam at the antenna
is thus

Eia = {Z EtpA}eﬂ(sz_wt) (19)
)
where the p*" mode’s modulus is
A et 8 w
|Eppal = w—ie( */wa) . Ly (2r% fwd) (20)
and its phase angle is
1 kr?
- Yo, - 2
e Do

in which w4 denotes the beam-width parameter at the antenna
and O 4 the beam-mode phase-difference there (both of which
are the same for incident and emergent beams and are given by
(2), (4), (5) and (10) with z = 24, the location of the antenna).

The on-axis gain, G, of an antenna is a measure of the
coupling between the antenna and a plane-wave propagating
along the axis. It is given by [8]

_K? |f0°° E42nr - dr|2
o f0°° |EtA|227rr- dr

22

The integrals can be evaluated for each mode separately
using the standard form [9]

/ b e XL (X)dX = (b— )PPt (23)

0

for R[b] > 0. Using equation 20 and 21 in equation 22, and
after some manipulation, we obtain

cos?

+ (Ep (=1)P A, sin{p(© 4 — 25)})2}

(24)
or
_G_ _ cos? é \p—q
GF - Zp A% £ ( 1) APACI
-cos {(p— q)(©4 —26)} (25)

where the angle § is arctan (kw?/2R.), |6] < 7/2. Gr =
2k2w? is the gain for a beam made up of a fundamental
(Gaussian) beam-mode only, with zero phase-front curvature
at the antenna.

Evaluation of the summations in equation 25 is a relatively
small computational task. Fig. 5 shows how the reduced gain
G/Gp varies with the beam-mode phase-difference at the
antenna ©,4 (i.e., with the dimensions of the horn and the
distance between horn and antenna) and with the phase-front
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Fig. 5. Gain-ratio of the antenna as a function of ©4 (the reduced
down-beam distance of the antenna from the horn) and of tan é (the reduced
phase-front curvature of the emergent beam-mode).

G
O .

1.1

0.8

Fig. 6. Section through Fig. 5 at § = 0.

curvature of the emergent beam-modes, tand = lcw?‘1 /2R,
(i.e., with the focal length of the antenna).

By plotting the ratio G /G, rather than G itself, attention is
focussed on the range of gain that can be spanned by changing
the dimensions of the horn, the separation of the horn and
the antenna, and the focal length of the antenna, within the
constraint of fixed beam-width at the antenna, w,4. The range
can be seen to be substantial.

The absolute maximum of the gain ratio, G/G, occurs at
©4 = 197, 6 = 0 (see the section for § = 0 in Fig. 6).
The reason for this can be seen in the forms of the amplitude
and phase distributions in the beam from the feed-horn as
shown in Fig. 2(a) and (b) above: it can be seen that, in the
cross-section at ©® = 1.97, the phase front remains close to
spherical out to larger values of the off-axis distance than in
other cross-sections and the amplitude falls away less rapidly.
The amplitude and phase distributions for © = 1.97 are shown
in Fig. 4.

For a large gain the beam-mode width-parameter at the
antenna, w4, would have to be large, of course; conversely, a
small antenna, i.e., small w4, would be possible and desirable
if a small gain were acceptable. Equations (2), (4), (5) and (10)
can be used to establish the following relationship between
w4 and the horn dimensions,

wa =wa(1+%)"? [ (1-1a) (26)
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and from (10)

24 — 2q = H/(1 = BA) 27

where b = tan(04/2). Hence for a horn specified for a

maximum gain ratio, i.e., © 4 = 1.97, we have
0.772

wa/a
ZA — Zq 0.662
H  0662—-A ‘(29)

It is clear that, for maximum gain ratio, the value of A
cannot exceed 0.662 because w4 and (z4 — 2,) are positive.
It is clear also that for a large antenna with ws >> a, the
required A will be close to the limiting value 0.622 and
(24 — z4) >> H so the antenna would be in the far-field of
the feed-horn. For small w4 /a (and therefore more moderate
gain) a smaller A is required and the antenna will be in the
near-field of the feed-horn.

If other constraints prevent the selection of a horn having the
dimensions required for the absolute maximum of gain-ratio,
the reflector can be shaped to give 6 the value which would
maximize the gain-ratio at the given © 4 (see Fig. 5), i.e., the
focal length would be off-set from the value R;; the phase
fronts of the modes leaving the antenna would consequently
not be plane there. The modes would converge, for negative
8, to a beam-waist at which their phase-fronts would be plane,
or would diverge, for positive 6, from a virtual beam-waist;
in either case the beam-width parameter at the beam-waist
plane will be smaller than w4 and the gain-ratio will therefore
be smaller than would be given by an optimally-dimensioned
feed-horn for the same w4.

We have implicitly assumed above that the antenna is
sufficiently large that there is no significant truncation of the
beam from the feed-horn at the rim of the antenna. When
there is truncation there the gain can still be determined by
evaluating the integrals given in the definition of gain in (22)
but the limits of the integrals should be 0, r4 rather than
0, co where r4 is the radius of the antenna. The result of
doing this for r4 = 1.27w4, which corresponds to truncation
at the —14 dB level, are given in Fig. 7 (showing the gain
relative to that for an untruncated pure Gaussian beam-mode).
Truncation has resulted in a major reduction in the general
level of gain (not surprisingly) and in a more simple surface
versus © 4, 6. The maximum gain is now found at § = 0 for
all values of ©4; i.e., for maximum gain the focal length of
the antenna should be such as to give a plane phase-front in
each emergent beam-mode at the antenna.

A =0.662 —

(28)

IV. THE PHASE-CENTERS OF CORRUGATED FEED-HORNS

An optical system incorporating thin lenses, or conic-section
reflectors, is designed to convert an incident beam having
a spherical phase-front of specified curvature, 1/R;, at the
input port into an emergent beam having a spherical phase-
front of specified curvature, 1/R., at the output port. (We
shall describe transmitting systems but there are, of course,
reciprocal relationships to receiving systems).

The notion of apparent phase-center of a feed horn has
frequently been invoked in deciding the precise location of a
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Fig. 7. As Fig. 5 but for an antenna which truncates the beam at the —14 dB
level.

—

EQUIPHASE SURFACE .
Fig. 8.

horn relative to the system it feeds. The apparent phase-center
of a horn for a specified down-beam distance is the center of
the spherical surface which bests fits the equi-phase surface of
the beam of the horn at that down-beam distance (see Fig. 8).
Its position in the horn will vary with the specified down-beam
distance. A feed-horn would be judged to be properly placed
with respect to an optical system when the best-fit spherical
surface at the input port has radius R;.

The best spherical fit to a non-spherical equi-phase surface
is not uniquely defined, however. Several inequivalent criteria
have been adopted in the past [10]. In each case the criterion
is essentially a minimum for the weighted mean of the phase-
deviation over the cross-section; they differ in the weights
assigned to the deviation at different points in the cross-
section. The adoption of one pattern of weighting rather than
another has usually received little quantitative justification. We
use the beam-mode analysis for a corrugated feed-horn below
to examine several apparent phase-centers.

4.1 Beam-Mode Phase-Center

At any given down beam distance all the beam-modes in
the beam of a feed-horn have spherical phase-fronts with
a common center-of-curvature. This common center is the
‘beam-mode phase-center’ for the given down-beam distance.
This center is thus at a distance {R4 — (24 — 2,)} behind
the aperture plane of the horn, where R4 is the radius of
curvature of the beam-mode phase-front at the down-beam
distance (z4 — z,). Then using (2) and (3), we obtain the
following expressions for T'gas (i.e., the distance of the beam-
mode phase-center from the apex of the horn expressed as a
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Fig. 9. Beam-mode phase-center as a function of reduced down-beam
distances for selected values of A, from 0.25 to 2.0.

fraction of the length of the horn, H).

Tpm = D/(1+ D) (30)

where
ZA=Zq
D= —H
Az (ZA ;Za 4 1)

This gives the location of the beam-mode phase-center
for any down-beam distance and any horn dimensions. In
Fig. 9, we show the location as a function of (z4 — z,)/H for
selected values of the horn parameter, A. It is clear from this
figure that the beam-mode phase-center has essentially reached
its far-field location when (z4 — z,)/H exceeds about 5.

@31

4.2 On-Axis Phase-Center

The fit for this case is simply that of matching the curvature
of the equi-phase surface at the on-axis point. We can use the
expression given in equation 16 for the phase ® in the beam
of a corrugated feed-horn to derive the following expression
for the on-axis phase-front curvature, 1/R, say:

1 /8%
VEh =5 (sﬁ)mo

S Asinlp =00}
Ew? > g PAvAq cos{(p — q)©}

where R, w, ® take the values appropriate to the specified
down-beam distance. The on-axis phase-center is at a distance
Ro — (24 — 2,) behind the horn aperture. Fig. 10 shows how
the location of the far-field on-axis phase-center varies with
the horn parameter A.

=1/R-

4.3 Least-Squares-Fit Phase-Center

The criterion for this case is minimization of the rms
phase deviation of the true equi-phase surface from the fitted
spherical surface over the main beam, within say, the ~12 dB
level. Equation 16 for @ can be used to determine this phase-
center for any down-beam distance but we present here, in
Fig. 10, the location of this center only for far-field distances,
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Fig. 10. The locations of far-field phase-centers of corrugated feed horns. T°
is the distance of the phase-center from the apex of the horn expressed as a
fraction of the horn length, H. A is the dimensional parameter of the horn i.e.,
(0.6435)%ka?

-0.2%

ST . (2) Beam-mode phase-center. (b) On-axis phase-center. This
curve was calculated using 30 modes. Use of a smaller number of modes
gives fewer but larger ripples. We believe that the ripples would disappear
if a sufficiently large number of modes were used. (c) Least-squares-fit
phase-center (to —12 dB level). (d) Maximal-gain phase-center.

as dependent on the horn parameter A. We have used, for this,
the data given by Thomas [11] (note that our A is 2.6 times
larger than the quantity for which Thomas uses the symbol A).

4.4 Best-Fit-Gaussian Phase-Center

A more graduated way of assigning greater weight to the
phase at points where the field amplitude is larger is to
find the best-fit Gaussian approximation to the field at the
specified down-beam distance, i.c., a beam having a Gaussian
amplitude distribution, and a spherical phase-front. The best-fit
criterion would be the maximization of the fraction of beam-
power in this Gaussian component, by appropriately choosing
values for the Gaussian width-parameter and for the radius of
curvature of the phase-front. This process is just that involved
in an analysis of the beam into Gauss—Laguerre modes as
treated in Section II, the best-fit Gaussian component being
the fundamental mode produced in that analysis. The best
fit Gaussian phase-center is therefore simply the beam-mode
phase-center (Section 4.1) and we show in Fig. 10 the position
of this phase-center for far-field distances, as dependent on the
horn parameter A.

4.5 Maximal-Gain Phase-Center

The phase-center which is defined using the field-amplitude
of the beam as a weighting function has a particular signi-
ficance. The center is located by maximizing the modulus of
the coupling integral between the horn’s field at the speci-
fied down-beam distance and the spherical phase function,
e"kr*/2Rs | ihat is to say, by finding the value of the radius
of curvature R, that maximizes

/ |E; Ie’.q)e"ikrz/y%s 2rr dr 33)

where the integral is over the beam cross-section, C, at the
specified down-beam distance. (Expanding the exponential
functions in (33) to the first order terms-i.e., taking the phase
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deviation to be small over C-shows that maximizing this
ovetlap integral will be equivalent to minimizing the mean of
the phase-deviation, (® — kr?/2R,), with |E;| as weighting
function, over C.)

The significance of this phase-center becomes clear when
the form of the expression above is compared with that for the
gain of an antenna. If a lens or reflector antenna, of focal length
f, were placed in the beam cross-section, ¢, the emergent
beam would have the form | E;|e*®e~**""/2f The antenna gain
is proportional to the overlap integral of this field with a plane
wave, i.e., to

(34)

/ |Et|ei®e“ik’"2/2f27rr dr
(o4

This has the same form as the expression in (33) above
if f is identified with R,. Finding the value of R, which
maximizes the expression in equation 33 is thus equivalent
to finding the value of f which maximizes the gain of the
antenna, as described in Section III. We can see, therefore,
that the phase-center of the horn obtained by using the beam’s
field amplitude as the weighting function is the maximal-gain
phase-center.

Given the above equivalence, the data in Fig. 5 can be used
to determine the location of the maximal-gain phase-center
of any corrugated feed-horn for any down-beam distance.
The location of this phase-center for far-field distances, as
dependent on the horn parameter, A, is included in Fig. 10.

A different situation exists when the antenna truncates the
beam from the feed-horn. We have shown in Fig. 7 that
truncation at the —14 dB level results in maximal gain being
obtained when the focal length of the antenna is such as will
give each beam-mode a plane phase-front as it emerges from
the antenna. This means, of course, that the maximal-gain
phase-center is at the beam-mode phase-center (or Gaussian
best-fit phase-center) when the truncation is within the —14 dB
level.

4.6 Empirical Phase-Centers

There are measured far-field power patterns for corrugated
feed-horns in the literature which are in good agreement
with what is expected if the field in the aperture-plane of
a corrugated horn has the form assumed in the beam-mode
analysis of Section III, i.e., a truncated zero-order Bessel
function for the amplitude distribution and a spherical equi-
phase surface.

There are few reported measurements of phase however.
Recent measurements of phase distributions for corrugated
horns for 110 GHz and 183 GHz have been reported by
Tuovinen et. al. [12], who determined the location of the far-
field phase-center in each case using a method which gives
essentially the on-axis phase-center discussed in Section 4.1
above. For the two horns the best estimate of the phase-
center was 2.1 mm behind the aperture for the first case and
8.1 mm for the second. Using our results in Section 4.1 above
for the particular dimensions of the horns in this work we
would expect the on-axis phase-center to be at 2.2 mm and
7.6 mm behind the aperture respectively, in good accord with
the empirical determination. Tuovinen et. al. compared their
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empirical phase-center locations with theoretical expectations
previously published and found a lack of agreement. The
phase-centers involved in the theoretical work they cited were,
however, not the on-axis phase-center but what we here have
called the Gaussian best-fit (or beam-mode) phase-center and
the least-squares-fit phase-center. As we have noted above, the
theoretically derived on-axis phase-center agrees well with the
empirical result.

V. OTHER TYPES OF APERTURE HORN

A beam-mode analysis along the lines followed above for
a corrugated feed-horn can be made of the beam of any feed-
horn for which the form of the field in the aperture plane is
known. The fields in the apertures of rectangular pyramidal
horns and smooth-walled conical horns have been analyzed
into Gauss—Hermite functions [5] and this would provide
the basis for a beam-mode analysis of phase-centers along
the lines set out here. If the field in the aperture plane of
a horn is not plane-polarized it is necessary to resolve the
field into orthogonally-polarized components and to develop a
beam-mode analysis for each polarization.

V1. CONCLUSION

The idea of a phase-center having an identified location
in a feed-horn is invoked when deciding the correct position
for a horn in relation to the optical system it is to feed.
The idea is compromised, however, by the fact that the equi-
phase surfaces in the fields of feed-horn beams are never, or
hardly ever, truly spherical. Phase-centers are consequently
not uniquely definable. We have shown, for corrugated feed
horns, how variously defined phase-centers span such a range
of locations within a horn that significant differences in
optical performance would result from adopting one rather
than another when placing a horn is an optical system.

We conclude that a phase-center should be defined with
reference to a selected performance criterion. We have used
maximal gain as an example of a performance criterion to il-
lustrate this question. Other criteria would be more appropriate
in some applications, for example, maximum beam-efficiency.
The beam-mode phase-center (which, as we have seen, can
be interpreted as a best-fit-Gaussian phase-center) is probably
the best choice if a detailed computation based on a specified
performance criterion is excluded. We have shown that the
location of the beam-mode phase-center is known for all horn
dimensions and down-beam distances, from near-field to far.

Beam-mode analysis contains the detailed forms of the fields
in the beams of feed-horns, not only for far-field distances,
but also for near and intermediate distances. It is therefore
an effective method for locating performance-related phase-
centers, as we have illustrated here. Once a beam-mode
analysis is undertaken, the optimum location of the horn
can be directly determined without explicit use of the phase-
center idea; nevertheless, giving a phase-center location for
the selected performance criterion and down-beam distance
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can be a convenient way to express the results. Beam-mode
analysis has previously been used to determine horn locations
in specific systems [13]. We believe the studies we report here
give a general context for understanding what is at stake.
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